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.  ABSTRACT

Esary and Proschan show that a lower bound tc system
reliability can be found by enumerating all min cut sets
in the coherent structure, connecting the components in
each min cut set in parallel and joining each of these
parallel subsystems in series where replicated components
are replaced by identical yet independently operating
components. A module of a coherent structure is a subset
of the basic components of the system which can be treated
as a component of the system due to their substructure
topology.

In this paper, it 1s shown that a lower bound estimate

of system reliability can be derived by decomposing the
coherent structure about its modules and applying the

Esary-Proschan lower bound procedure to each module and
then to the resultant coherent structure where each mod-
ule has been replaced by a single component whose relia-
bility is the Esary-Proschan lower bound to that module,

This estimate of system reliability is sharper than tue
estimate of system reliability obtained by utilizing the
Esary-Proschan procedure on the total system directly.
Furthermore, this estimate is computationally more effi-
cient than applying the Esary-Proschan procedure to the
total system directly since the min cut sets need only be
enunerated for each module. Applications of this result
are given and analogous results for an upper bound to
system reliability are stated.




APPROXIMATIONS TO SYSTEM RELIABILITY USING A
' MODULAR DECOMPOSITION

by

Lawrence David Bodin

1.0 INTRODUCTION

A coherent structure (C, ¢) 1is made up'of a set of components C = {ci}:-l

which exist in one of two states--working or failed. Let x, be a binary variable

i
vhich designates the states of component {1 ; X - 1 1f the component works and
0 if failed. Similarly, define the structure function ¢(x) = ¢(x1, TV 5 xn)+

to be 1 i1if the system is working and O otherwise. For the structure to be

coherent, the following two conditions must be satisfied:

(1) Each component ¢, must be essential; that is to say, there

i
exists a realization of the other components cj y J 41, such
that ¢(11, x) =1 and ¢(Oi, x) = 0 where ('1’ xX) =
(xl, sees Xy g0 g Xyggs rees xn) .

(2) 1f X, 2V for each 1 , then ¢(x) < ¢(y) . This condition

implies that the state of the system is not degraded by changing

a component from a faliled condition to a working condition.

From (1) and (2) it immediately follows that ¢(1) = 1 and ¢(0) =0 .

The state of any component in (C, ¢) 1is assumed random with P(Xi =]1) = Py
and stochastically independent of any other component. The reliability function
h(p) 1is defined to be E(¢(X)) = P(4(X) = 1) . To further characterize the

reliability function h(p) , the following definitions are needed.

1”I'hroughout: this paper a vector (p,, ..., p_) 1s denoted as p and a scalar
function of several variables is designated as ¢(x) or h(p) .




¢ AVB=A+ B - AB.

oy <x+y <x Vi and ¥y <% for some 1 ,

i
Path Vecitor of (C, ¢) : Vector x such that ¢(x) =1 .

Cut Vector of (C, ¢) : Vector x such that 4(x) =0 .

Path Set: {cg | X - 1 and ¢(x) = 1} .

Cut Set: {eg | X, = 0 and ¢(x) = 0} .

Min Path Vector: Vector x such that ¢(x) = 1 and

for all y < x , ¢(y) =0 .

Min Cut Vector: Vector x such that ¢(x) = 0 and

for all y >x , ¢(y) = 1.

® Min Path Set: B = {eg | x, = 1l and x is a min path vector}.
® Min Path Structure Function: n(x) = Il X, where
c,€B
i

B 1s a min path set.
® Min Cut Set: A = {c, | X, =0 and x is a min cut vector} .

e Min Cut Structure Function: u(x) = V x, where

cieA i
A 1s a min cut set.

Birnbaum, Esary, and Saunders [3] show that 1if Bl’ 2305 Br comprise the min path
sets of (C, ¢) and ni(x) comprise the min paiun structure functions,

i- 1, reay r’

- .
h(p) = E[ v ni(X)] (1)
{=]1 -

and 1if Al,Az, Yy As are the min cut sets of (C, ¢) and uj(X) make up the

min cut structure functions, § =1,2, ..., s ,

8
h(p) = ELH My (X)] (2)
-1

A method for evaluating (1) and (2) has been proposed by Bimbaum, Esary, and Saun-
ders [3].




A module of a system can be thorght of as "a subset of the basic components
of the system which are organized into some substructure of their own and which
affect the system only through the performance of their substructure. Rephrasing,
a module is an assembly of components which can itself be treated as a component

of the system."f The coherent system (A,XA) is a module of (C,¢) 1if

® AC C and A is not empty.

o ¢(x) = W(XA(XA), xA') for all binary vectors x = (xA, xA')

t ]
vhere A 15 the complement of A and [c, UA ,y] 1s a coherent system. In the
above definition, all components making up set A in the coherent structure (C,9)
'
have been replaced by a single component N in the coherent system [cA Uua,yl,

and the state of A is given by Xy o the structure function of the module

(A,xA) . More generally, the coherent system (C,¢) can be decomposed into modules
t
(Ai'xAi) , 1 =1,2, ..., t , such that kul Ak = C and Ak n A!. = E , the empty

set, for k ¥ 2 . Re;;lacing each module (Ai’xAi) by a single component Mi and

denoting the state of M, as

Xz

N s , the state of module (Ai’xAi) y 48 new coherent

structure [M,y] 1s formed where M = (Ml,Mz, o Mt) and

> eees X, ) . This reduction is called the modular decomposition of
2 t

v = lb( xAl.)(A
a coherent structure.

Since the computation of h(p) 1s difficult, a method .to approximate h(p)
is desired. Esary and Proschan [5] describe such a procedure. The Esary-Proschan
lover bound procedure computes a lower bound on h(p) by enumerating all min cut

sets of (C,$) , connecting the components of each min cut set in parallel and

Joining each of these parallel subsystems in series where the replicated components

*Bimbaum and Esary [2].

———




are replaced by identical but independent operating components. In this paper, the
modular decomposition of a coherent structure is utilized together withL the
Esary-Proschan lower bound procedure to obtain the Lower Bound Modular Decompositicn
Theorem.

The Lower Bound Modular Decomposition Theorem shows that by decomposing a
coherent structure into modules and using the Esary-Proschan lower bound procedure

on [M,y] (where the reliability of M, 1s defined to be the Esary-Proschan

i
lover bound to (Ai’xA )), the lower bound on h(p) thus found is no worse than
i

applying the Esary-Proschan lower bound procedure to (C,4) directly.

In general, the modular decomposition of a coherent structure is not unique.
Hence, the question arises as to which modular decomposition to use. This question
is discussed in Section 3.0 by refining the modular decomposition of a coherent
structure to include the possibility of decomposing each module further. Finally,
in Section 4.0, analogous results are stated for an upper bound on h(p) .

The following notation is utilized in this paper:

o Reliability of the coherent structure (C,¢) : h(p) = hc(p) - h¢(p)

* * *
¢ Esary-Proschan lower bound to (C,¢) : h (p) = ho(p) = h¢(p)




L)
2.0 LOWER BOUND MODULAR DECOMPOSITION THEOREM
Let uj(x) » J=1,2, ..., 8, be the min cut structure functions of the
s
coherent structure (C,¢) . Thus, ¢(x) = I yj(x) . The Esary-Proschan lower
i=1
bound to (C,¢) 1is
* 2 :
h¢(p) = I P(uj(x)-l)- 1 h (p) Q)
=1 =1 ¥
Esary and Proschan [5] show that
*
h(p) = h,0) 2 b () )
Lemma 1:
If xl(x), Sobhh xt(x) are disjoint coh-~rent structure functions and
t t * *
¢(x) = V x,(x) , then V h (p) _>,h¢(p) 0
1=1 1=1 X4
Proof:
Let A, ,.(x), ..., A,  (x) be the min cut structure functions of x,(x) .
11 imi i
By
Then, xi(x) - 221 Aiz(x) . From (3)
2 ! g
B ® = 1 PO, =1 = 1 h (p) (s)
i f=1 f=] 12
Let Ail = Aiz(x) be independent binary variables, £ = 1,2, ..., LA mi
'S
= - = = ] = A
i=1,2, ..., t. Thus, P(Ail 1) P(Aiz(x) 1) Q, - Let xi(A) 121 14
so that .
h' (p) = h *(q) 6)
Hig [ T

i i




t
* *
Furthermore, let ¢ (A) = V xi(A) . Since xi(x) , 1=1,2, ..., t , are
i=1

*
disjoint binary functions, xi(A) are disjoint binary functions and

& 4 t " t t
h ,(@q) = P( ' xi(A) - 1) = V P(xi(A) =1)= V h*(q)= V h (p) (7)
¢ i=1 =1 i=1 X4 1=1 Xy
1€ uj(x) y J=1,2, ..., 8, are the min cut structure functions of ¢(x) , then
by Theorem 4.1 of Birnbaum and Esary (2] for min cut sets, it can be concluded
that
t
x)= V ) 8
TR )
* t
for some A, (x),A, (xX), oo, A, (x) . If we let u,(A) = V A, |,
1 2 te 3 {=1 i.

j=12, ..., 8, vheve Ai_(x) = A in the corresponding expression of (7),

i.

hu (p) = hu*(q) (9)

3 b

*
Thus, by (8), (9), and Theorem 4.1 of Birnbaum and Esary [2], ul(A) .

* * *
uz(A), ...,us(A) are the min cut structure functions of ¢ (A) . Then,

*
(@)= T h#*(@)= 1T h (p)=nh,A(p) (10)
hy* =1 ¥ =1 Y P
But, by (7) and (10)
s.n*()-h*()m**u b (p) (11)

which proves the lemma. //




% * %
Let h = [hx (@) eees b (p)] and h = [hx @)y +ens B (p)] .
1 t 1 t

Theorem 2: Lower Bound Modular Decomposition Theorem

If xl(x),xz(x), T xt(x) are disjoint coherent structure functions, then

hy(®) = b, [hx]: Max h: [hX] , h u{':]}
> Min ‘h; [hx] . h J\;B
Wb

%
> h¢(p)

(12)

v

Proof:

Recall that Y = Y(X, »X. » +++» X, ) 80 that h (p) = h [h ] by (6.21) of
. Al A2 At ¢ vl X

*
Birnbaum and Esary [2]. Since hx »® 2 hx (p) by (4) and hw[ul’UZ’ aab ut] is

i i

* * x[ %
monotone in uy for each 1 , h¢(p) > hW[hX] and hw[ﬁx] > hW[hx] . By (4),

* * k[ ok A * *
h¢(p) > hW [hx] and hlb [hx] > hw [hx] . If we can show hxp [hXJ > h¢(p) , we have
established the theorem.

Let ¢j(x) = Ej(xl(x), Aryey xt(x)) ,» J=1,2, ..., s , be the min cut struc-

ture functions of the coherent structure [M,y] where ¢(x) = wlxl(x), cees xt(x)] .

Let (x) 15 ImL2 .. 4 K (x) . It is

B 3

(x) are the min cut structure functions of ¢(x) ,

ujl , be the min cut structure functions of ¢

easy to see that “jz

£=1,2, ..., K, ,§=1,2, ..., s . By Lemmal,

3

* *x j
h >h, (p)= I°h (p) (13)
EJ Fx] = ¢j u




Hence, s s K

s
h*th% = T h_[h*] > N h* (p) =N N h (p) = h*(p)
Wl 4 ya1 Ejl x| 2 =1 %3 4=1 e=1 Y32 ¢

This proves the theorem. //

Example 1:

Let the coherent structure (C, ¢) be given as in Figure 1.

1 S
2 4
_— 5 6 I
7 9
r—‘—
8 10
FIGURE 1

Let (Ai’ xi) be the modular decomposition of (C, ¢) where Ai = (

i=1,2,3,4,5 . Then,

) = i) 2 - ) - )

(14)

Cas-12 Co¢)

(15)

The coherent structure which generates hﬁ{hx], hﬁ{h&] and h%(p) is given in

Figure 2.
L =
] 2 4
r . y —
2 5 3 A
7 6 6 9
8 9 7 10
10 8

FIGURE 2




The method suggested by the Lower Bound Modular Decomposition Theorem has two

inherent advantages over the Esary-Proschan procedure:

(1) It is a more accurate estimate of h¢(p) :

(2) It requires the enumeration of all min cut sets over a set of
coherent structures with less components. Since the work
required to enumerate all min cut sets of a coherent structure
increases exponentially with the number of components in the

structure, this enumeration can be carried out more efficiently.

To illustrate the accuracy of the approximations to system reliability
obtained by utilizing the Lower Bound Modular Decomposition Theorem as opposed
to the Esary-Proschan procedure applied directly to the coherent structure, con-

sider the frllowing example.

Example 2:

Figure 3 i{llustrates the coherent structure under consideration.

FIGURE 3




Define

modular sets are Al = {1,2,3,4,5} and A

(A

1° X4

10

) , i=1,2 |, to be the modular decomposition of (C, ¢) where the

- {6,7,8,9,10} . Applying the Lower

2

Bound Modular Decomposition Theorem, we find that;

Assuming each component

table (Figure 4).

Component

h¢( p) = h$[hl(p), hz(p)]

v

hy [F1(P)+ b5 () .

h$[h;(p).h*(pq

h;(p)

v

to have the same reliability, we obtain the following

Reliability __ De(P) by (@) ,h5 ()] hg ®)
.99 .99999996 .99999996 .99999996
.95 .99997275 .99997251 .99997243
.90 .99953689 .99952217 .99951609
.75 .98077010 .97799376 .97584785
.50 .75 .67585658 56262773
.25 25811386 .12385429 ,011416517
.10 .042576889  .00529541 .533 x 107
.01 40 x 1073 698 x 1078 941 x 10

FIGURE 4
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3.0 EXTENSIONS

Since the modular decomposition of a coherent structure is not necessarily
unique, the question arises as to which modular decomposition to utilize.

Insight into this question is given by the results of this section.

Let v (B 5 J=ln2s -9 8, i=1,2, ..., t be disjoint coherent structure

3

functions and oi(w) , i=1,2, ..., t be disjoint coherent gtructure functions such

that xi(x) = oi(wil(x),wiz(x), ...,'wiai(x)) . Let 6(w) be the coherent structure

function defined by 6(w) = w(cl(w), geni ot(w)) . Then
0(x) = v(x; (), ..o, xt(X))

=y ol(wll(X)’ sy wlsl(x))' 212l <y ct(wtl(x)’ teey wtst(x)) (16)

= e(wll(x), o o Lais wtst(x))

Thus, xl(x), noof xt(x) define the coherent structure functions of a modular

decomposition of (C, ¢) while wil(x), vees Wyl (x) define the coherent struc-
i

ture functions of a modular decomposition of the coherent structure defined by

(p)] and h* = [h* (p), ..., h* (i ,
isi wi [ v

¥ wil isi

X, (x) . Let h = P 3 sews B
i vy ["wﬂ

1-1,2’ * ey t .

Theorem 3:

h* b h*h ,h_, ..., h
R Y I R w

(b) h_ |[h*] <h *,h*,...,h*]
v x] elhwl v, v,

a17n
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Proof:

(a) wij(X) R RS 8, » i=1,2, ..., r , are independent binary ran-
dom variables. Let 94 = P[wij(x) - 1] , 3=1,2, ..., 8, » i=1,2, ..., r . By

the Lower Bound Modular Decomposition Theorem,

h$[h°1(Q)’ ol hcr(qq > hi(q) (18)

Now,

W[, = b3 lhcl(q). h°r(q)]

19
> h*(q) = h*fh , ..., h ]
] e[ vi v,
(b) By the Lower Bound Modular Decomposition Theorem
h* (p) < h lh* ], i=1,2, ..., t (20)
X4 %Y1
Since hw is nondecreasing,
h h®] < h [h_(h* )\, ..., h_(h* ]
w[ x] .4 l °1( w1) °t( wt) @t

=h [h* , ..., h 1
ooy e Ny

The modular decomposition of (C, ¢) defined by the coherent structure
functions wij(x) is a refinement of the modular decomposition of (C, ¢)

defined by the coherent structure functions xi(x) . Let

p(x) = wk[xlk(x), ceer Xy k] y k=0,., ..., k* | be a series of increasingly
k

refined decompositions where r, " ) B xlk(x) = ¢(x) , w°[¢(x)] = 4(x) ,

T "0 the number of components in the coherent structure, Xipa ™ X o

1-1’2’ o/ [8) leHy n ’ wk*[xlk*! oe Siy xnk*] ™ ¢(X) and wﬁ*[xlk*’ LA ) Xnk*] b ¢*(X)




Then, from Theorem 3,

h$[hx](k) - hﬁ.‘{hxlk(p), o hx ‘Ep)] is nonincreasing in k , k=0,1,2, ..., k

v

hw[h;](k) - hw [h* (P)y +eey h (p)] is nondecreasing in k ,k=0,1,2, ..., k
k

X1k Xe k

‘.where
hath 140 = 0 p)
ngth 1= nacp)
hw[h;](o) - hA(E)
b 1415 )
Let,

(k) _
h;[h;] h;k[h;‘(lk(P), h;rkk(p)]

Then, by the Lower Bound Modular Decomposition Theorem
(k k k
] &) < mn[h;(hx)( RGO ], e0,1,2, ., s

These results can be qualitatively depicted as follows (Figure 5).

13

(22)

(23)

(24)

*®

*




h¢(p)

FIGURE 5
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4.0 UPPER BOUND MODULAR DECOMPOSITION THEOREM

Let nj(x) s J=1,2, +.., r , be the min path structure functions of (C, ¢)
r
where ¢(x) = V nj(x) . The Esary-Proschan upper bound to (C, ¢) 1is
3=1
r r
hz*(p) =V P(nj(x) =1)=V hn () (25)
i=1 =1
where
h¥*(p) 2 h(p) (26)

Results similar to those derived previously in this paper can be shown. These
results are stated without proof since the proofs are analogous to those given

previously.

Lemma 5:

If xl(x),xz(x), cee xt(x) are disjoint coherent structure functions and

~

t t
(x) = I xi(x) » then T h¥*(p) _ hg*(p) ;
iml 1=1 Xy ,

Theorem 6: Upper Bound Modular Decomposition Theorem

If xl(x), Ry xt(x) are disjoint coherent structure functions, then,

hy(p) = huﬁhx] S Min(hi*(h 1, b [hA*])

A

Max{ha*[hxl, hw[h;*]}
27)

A

h$*[h;*]
%%k
S hy*p)

vhere h = fh ey b d h** = [h¥k(p), ..., h*k
X xl(p)a ’ xt(p) an X xl(P) ’ xt(P)
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Theorem 7:

(a) h;*[hx] < h;*[hwl, vees hw]
*k kk **t )
(®) hw[hx] > he[hwl, covs h"z]

where the coherent structure functions wij(x) are defined as in Section 3.0,

g k% .1, k&
h = (p)y «+es h ()] ,and h =Tn  (p), «.., h (p)
¥y [h"il Yig " ] Yy [ Y11 Vis : J




(1]

(2]

(3]

(4]

(5]
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